PERVASIVE DATA MANAGEMENT

WIRELESS SENSOR NETWORKS AND RFID: A DATA CENTRIC OVERVIEW

Prof. Fabio A. Schreiber

Dipartimento di Elettronica, Informazione, e Bioingegneria Politecnico di Milano

WIRELESS SENSOR NETWORKS

COMPONENTS

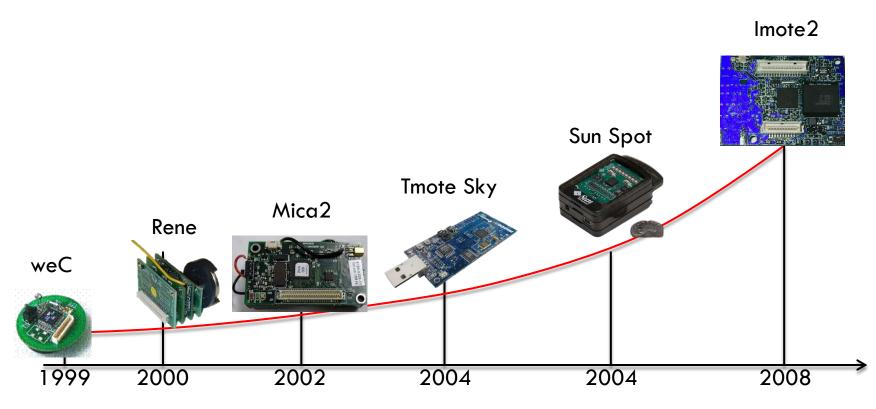
- THOUSANDS OF TINY LOW POWER DEVICES SPREAD OVER (POSSIBLY LARGE) PHYSICAL AREAS
- □ THE DEVICES MUST BE SMALL, UNOBTRUSIVE, AND CHEAP

NETWORK

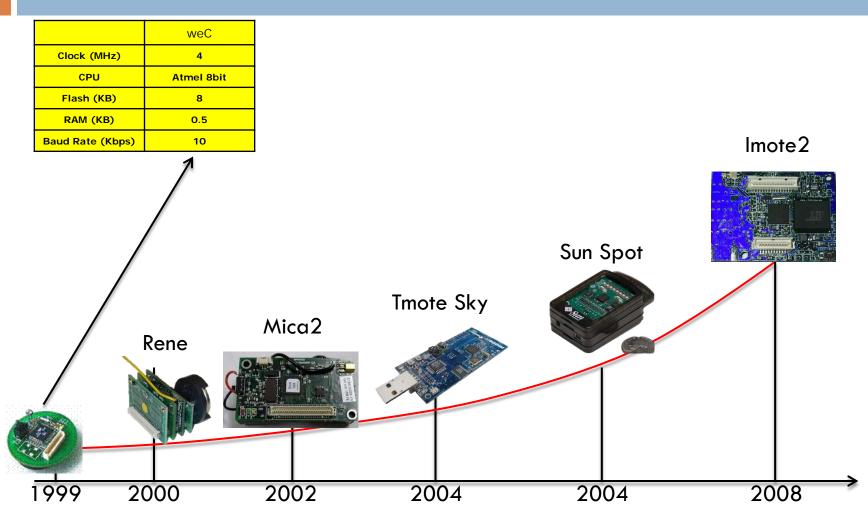
- THE NETWORK MUST BE UNEXPENSIVE TO DEVELOP, DEPLOY, PROGRAM, AND EASY TO UTILIZE AND MAINTAIN
- COMPRISE A NUMBER OF SENSOR NODES AND A BASE STATION

© Schreiber

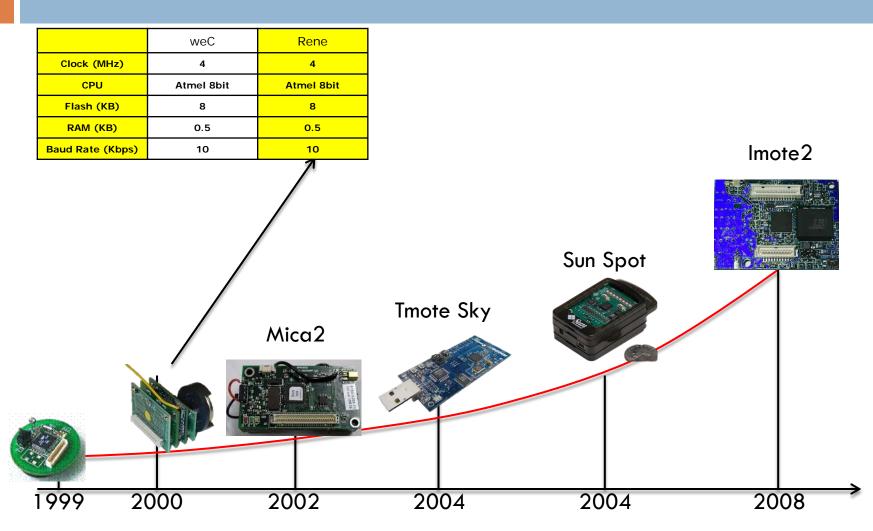
WIRELESS SENSOR NETWORKS

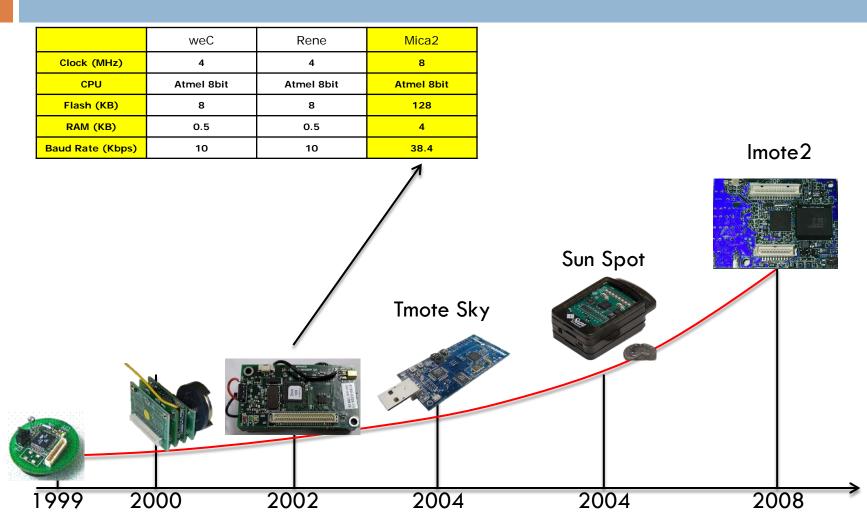

- SENSOR NETWORKS INVOLVE THREE AREAS:
 - SENSING
- □ WSN APPLICATIONS:
 - ENVIRONMENTAL MONITORING
 - AIR, LAND, WATER, FORESTS, ...
 - ANIMAL BEHAVIOUR
 - EMERGENCIES PREVENTION AND CONTROL (fires, earthquakes, avalanches, etc.)
 - HEALTHCARE
 - PATIENT MONITORING
 - - VEHICLE TRACKING
 - LOGISTICS
 - MILITARY AND DEFENSE
 - SURVEILLANCE OF CITY DISTRICTS
 - TERRORISTIC THREATS PREVENTION

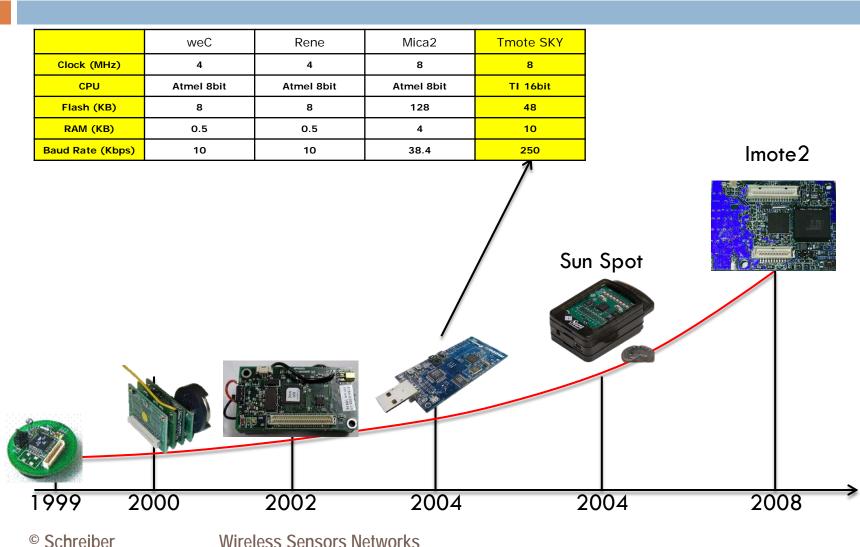
SENSORS: SOME FEATURES


PROPERTIES	EXAMPLE AND SIZE	APPLICATION	MEMORY	OTHER
SPECIALIZED SENSING PLATFORM	SPEC (mm³)	RF tag or specialized sensor	3K RAM	
GENERIC SENSING PLATFORM	MOTE (1-10 cm ³)	General purpose sensor and communications.	4K RAM 128K FLASH	TinyOS
HIGH- BANDWIDTH SENSING	IMOTE (1-10 cm³)	High bandwidth sensor (video, acoustic, etc.)	64KB RAM 512KB FLASH	TinyOS, BLUETOOTH, Connectivity with cell phones
GATEWAY	STARGATE (> 10 cm³)	High bandwidth sensor plus gateway	<512KB RAM <32MB FLASH	LINUX or WINDOWS, Serial connection to sensor network

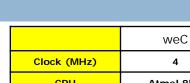
3

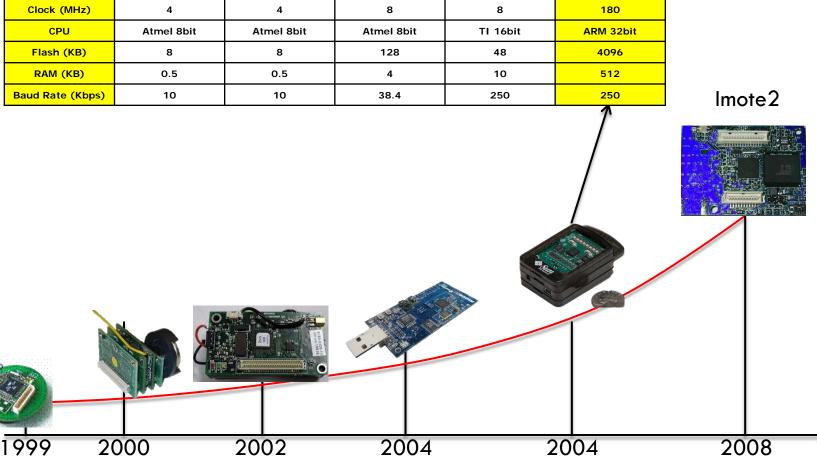

© Schreiber


© Schreiber Wireless Sensors Networks


© Schreiber

© Schreiber

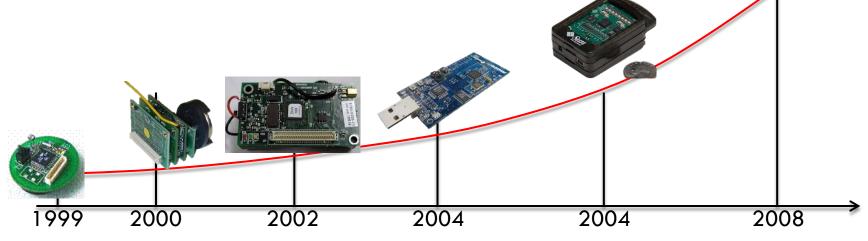

© Schreiber


Wireless Sensors Networks

Mica2

Rene

[©] Schreiber



Sun Spot

Tmote SKY

	weC	Rene	Mica2	Tmote SKY	Sun Spot	Imote2
Clock (MHz)	4	4	8	8	180	13-416
СРО	Atmel 8bit	Atmel 8bit	Atmel 8bit	TI 16bit	ARM 32bit	ARM 32bit
Flash (KB)	8	8	128	48	4096	32M
RAM (KB)	0.5	0.5	4	10	512	256k+ 32M(ext)
Baud Rate (Kbps)	10	10	38.4	250	250	250

© Schreiber

11

YEAR	OS	Architecture	Multitasking	Real-time	Memory Manag.	Progr. Paradigm	Progr. Language
2000	TinyOS	Monolithic	No	No	Static	Event driven	NesC
2004	Contiki	Modular	Yes	No	Dynamic	Threads and events	С
2005	Nano-RK	Monolithic	Yes	Yes	Static	Threads	С
2005	SOS	Modular	No	No	Dynamic	Event driven	С
2005	Mantis	Modular	Yes	No	Dynamic	Threads	С
2008	LiteOS	Modular	Yes	No	Dynamic	Threads and events	LiteC++

12

YEAR	OS	Architecture	Multitasking	Real-time	Memory Manag.	Progr. Paradigm	Progr. Language
2000	TinyOS	Monolithic	No	No	Static	Event driven	NesC
2004	Contiki	Modular	Yes	No	Dynamic	Threads and events	С
2005	Nano-RK	Monolithic	Yes	Yes	Static	Threads	С
2005	sos	Modular	No	No	Dynamic	Event driven	С
2005	Mantis	Modular	Yes	No	Dynamic	Threads	С
2008	LiteOS	Modular	Yes	No	Dynamic	Threads and events	LiteC++

13

YEAR	OS	Architecture	Multitasking	Real-time	Memory Manag.	Progr. Paradigm	Progr. Language
2000	TinyOS	Monolithic	No	No	Static	Event driven	NesC
2004	Contiki	Modular	Yes	No	Dynamic	Threads and events	c
2005	Nano-RK	Monclithic	Yes	Yes	Static	Thieads	d
2005	SOS	Mocular	No	No	Dynamic	Even driven	d
2005	Mantis	Modular	Yes	No	Dynamic	Theads	Y
2008	LiteOS	Modular	Yes	No	Dynamic	Threads and events	LiteC++

14

YEAR	os	Architecture	Multitasking	Real-time	Memory Manag.	Progr. Paradigm	Progr. Language
2000	TinyOS	Monolithic	No	No	Static	Event driven	NesC
2004	Contiki	Mocular	Yes	No	Dynamic	Threads and events	d
2005	Nano-RK	Monclithic	Yes	Yes	Static	Thieads	d
2005	SOS	Mocular	No	No	Dynamic	Even driven	d
2005	Mantis	Modular	Y	No	Dynamic	Theads	Y
2008	LiteOS	Modular	Yes	No	Dynamic	Threads and events	LiteC++

From simple implementation towards feature-rich operating system (thanks to parallel hardware evolution)

© Schreiber

HW: MOTES (1)

- 15
- TINY MICROCONTROLLER-BASED SYSTEMS WITH EMBEDDED SENSORS AND WIRELESS COMMUNICATION
- □ KEY CONSTRAINTS:
 - BATTERY POWER
 - POWER IS THE MOST PRECIOUS RESOURCE: IT IS OFTEN IMPOSSIBLE TO REPLACE OR RECHARGE BATTERIES ONCE A MOTE HAS BEEN DEPLOYED
 - LIMITED SYSTEM RESOURCES
 - RAM
 - PROCESSING POWER
 - NON-VOLATILE STORAGE
 - BANDWIDTH

HW: MOTES (2)

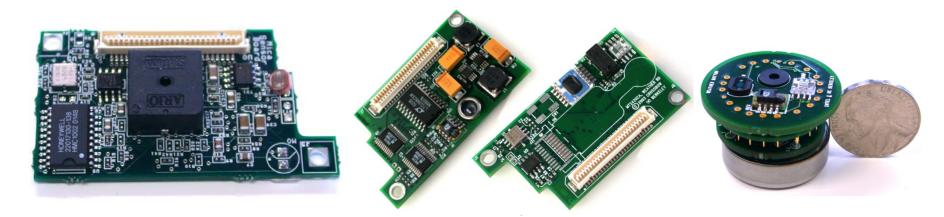
FURTHER CONSTRAINTS:

- WSNs MAY HAVE THOUSANDS OF NODES
- NODES THEMSELVES DO NOT HAVE A NOTION OF NODE PROXIMITY
- NODES' TRASMISSION MAY INTEFER WITH ONE ANOTHER: COLLISIONS
- BATTERY FAILURES
- SENSOR CALIBRATION

Software needs to take these into account

MOTES: THE Mica2 PLATFORM

- Developed at UC Berkeley
- Powered by two AA batteries
- Atmel ATmega128L µC
 - 8 MHz
 - 4KB EEPROM
 - 4KB RAM
 - 128KB Program Flash memory
- Chipcon CC1000 multichannel radio
 - Range of up to 150-300 m.

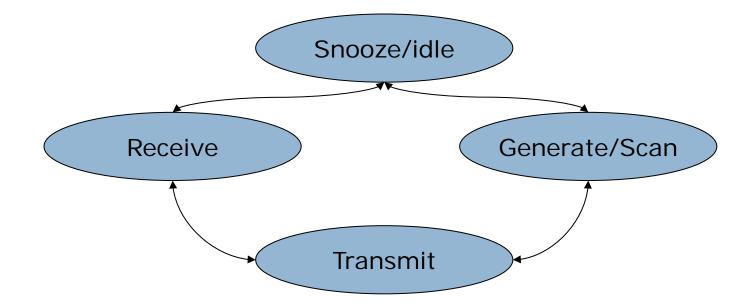

MOTES: THE Mica2 PLATFORM

Mica2Dot

Basically the same features, smaller size, fewer sensor options

Different sensor boards for Mica2 and Mica2[

MOTES: AVAILABLE SENSORS


Part of the Crossbow development kit:

- MTS310 Sensor Board (for Mica2): includes Acceleration, Magnetic, Light, Temperature, Acoustic sensors.
- MDA500, Mica2DOT data acquisition board: allows easy access to the microcontroller I/O pins to hook up sensors

Other sensors:

- MTS420A: offers weather monitoring sensors such as humidity, barometric pressure, temperature and light, in addition to a GPS module.
- MTS500: Weather monitoring module for Mica2DOT: offers temperature, humidity, barometric pressure, and light sensors.

STATE DIAGRAM OF A MOTE

© Schreiber

OTHER SENSORS

SenseNode® -Genetlab®

© Schreiber

Program Flash Memory 48 kB on chip Acoustic Piezzo Microphone Data RAM 10 kB on chip Electret Microphone Flash Measurement 1 MB external Magnetic 3 axis Inductive Serial Communications $2 \times USART$ Seismic/Vibration \pm 1.2 g accelerometer

Node support

V-Link®-mXRS™, SG-Link®mXRS™, G-Link®-MXRS™, DVRT-Link™-mXRS™, TC-Link®-6CHmXRS™. TC-Link®-1CH-mXRS™. EH-Link®, SG-Link® OEM-S, TC-Link® OEM all legacy 2.4 GHz wireless nodes

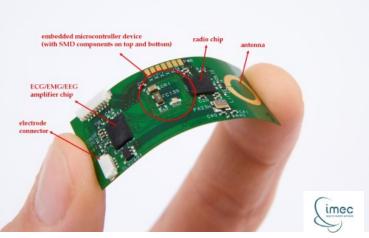
Power consumption 65.6 mA - 8 active node channels operating at 256 Hz Legacy Low Duty Cycle with analog outputs active 45.7 mA - Idle

Radio frequency 2.4 GHz direct sequence spread (RF) transceiver spectrum, license free worldwide (2.405 to 2.480 GHz) - up to 16 channels, radiated power programmable from 0 dBm (1 mW)

Range for bidirectional RF link

Dimensions

Weight


Wi

carrier

16 dBm (39 mW) Extended Power with range up to 2 kilometers (not available in Europe) 10 dBm (10 mW) Standard Power with range up to 1 kilometer 0 dBm (1 mW) Low Power with range up to 70 meters 88 mm x 70 mm x 20 mm without antenna 126 grams

to 16 dBm (39 mW)

The University of Michigan has squeezed a solar cell, rechargeable battery, and **CPU-based** data acquisition system into 9mm³ (2.5x3.5x1mm).

OTHER SENSORS

SenseNode® -Genetlab®

© Schreiber

Program Flash Memory 48 kB on chip Acoustic Piezzo Microphone Data RAM 10 kB on chip Electret Microphone Flash Measurement 1 MB external Magnetic 3 axis Inductive Serial Communications $2 \times USART$ Seismic/Vibration \pm 1.2 g accelerometer

> V-Link®-mXRS™, SG-Link®mXRS™, G-Link®-MXRS™, DVRT-Link™-mXRS™, TC-Link®-6CHmXRS™. TC-Link®-1CH-mXRS™. EH-Link®, SG-Link® OEM-S, TC-Link® OEM all legacy 2.4 GHz wireless nodes

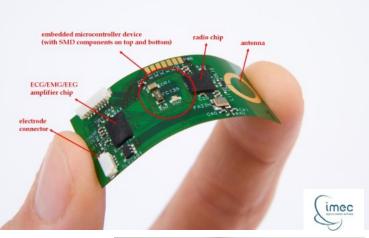
Power consumption 65.6 mA - 8 active node channels operating at 256 Hz Legacy Low Duty Cycle with analog outputs active 45.7 mA - Idle

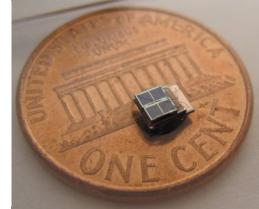
to 16 dBm (39 mW)

Radio frequency 2.4 GHz direct sequence spread (RF) transceiver spectrum, license free worldwide (2.405 to 2.480 GHz) - up to 16 channels, radiated power programmable from 0 dBm (1 mW)

Range for bidirectional RF link

Dimensions

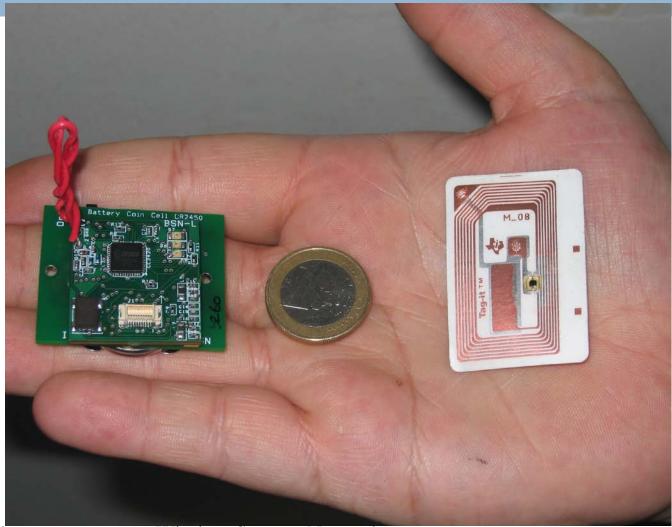

Wi_{Weight}


carrier

Node support

16 dBm (39 mW) Extended Power with range up to 2 kilometers (not available in Europe) 10 dBm (10 mW) Standard Power with range up to 1 kilometer 0 dBm (1 mW) Low Power with range up to 70 meters 88 mm x 70 mm x 20 mm without antenna 126 grams

The University of Michigan has squeezed a solar cell, rechargeable battery, and **CPU-based** data acquisition system into 9mm³ (2.5x3.5x1mm).



RADIO FREQUENCY IDENTIFICATION TAG (RFID)

- - □ LOW END IN THE SENSORS CAPABILITIES SCALE
 - TWO COMPONENTS SYSTEMS
 - READER
 - ENERGY SOURCE
 - R/T ACTIVE DEVICE
 - TRASPONDER (TAG)
 - UNIQUE ID
 - SMALL PROCESSING CAPABILITY
 - SMALL ON-CHIP STORAGE
 - R/T ANTENNA

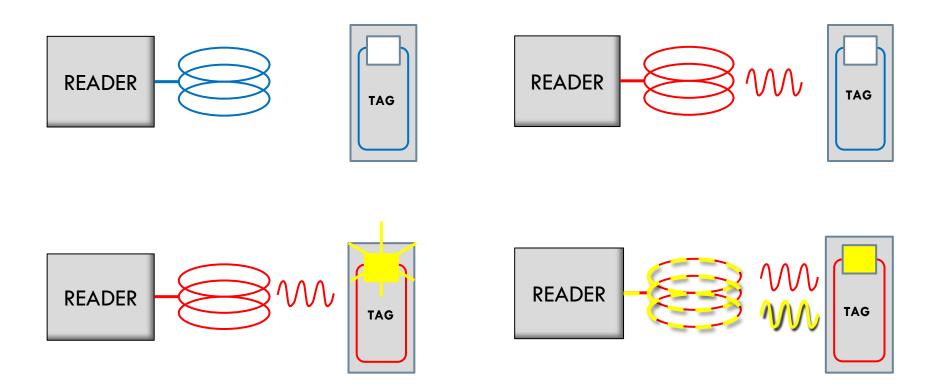
SENSORS COMPARISON

TAG CLASSIFICATION

D POWER SOURCE

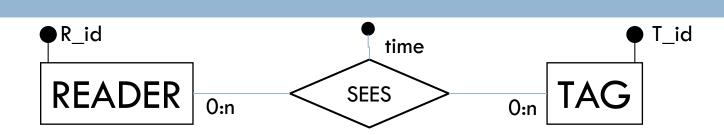
- ACTIVE (e.g. ARVA avalanche rescue system)
- PASSIVE (no power source on tag)
- SEMIPASSIVE (e.g. Telepass)

- READ ONLY
- READ/WRITE


□ FREQUENCY

- □ LF (125 134 kHz)
- HF (13.56 MHz)
- UHF (868 956 MHz)
- MW (2.45 GHz)

© Schreiber


RFID SYSTEM OPERATION

26

© Schreiber

MODELING AND QUERYING AN RFID SYSTEM

rfidsys

Which Tags passed under Reader R1 in the last ten minutes?

<u>R_id</u>	<u>T_id</u>	<u>time</u>
R1	T15	t1
R1	T54	t5
R1	T15	t7
R2	T22	t2
R2	T15	t3
R2	T81	t4
R3	T15	t5
R3	T22	t6

SELECT T_id FROM rfidsys WHERE R_id=R1 AND time IN (SELECT (time , T_id) FROM rfidsys WHERE (t-time) < 10)

© Schreiber

RFID DATA CENTRIC APPLICATIONS

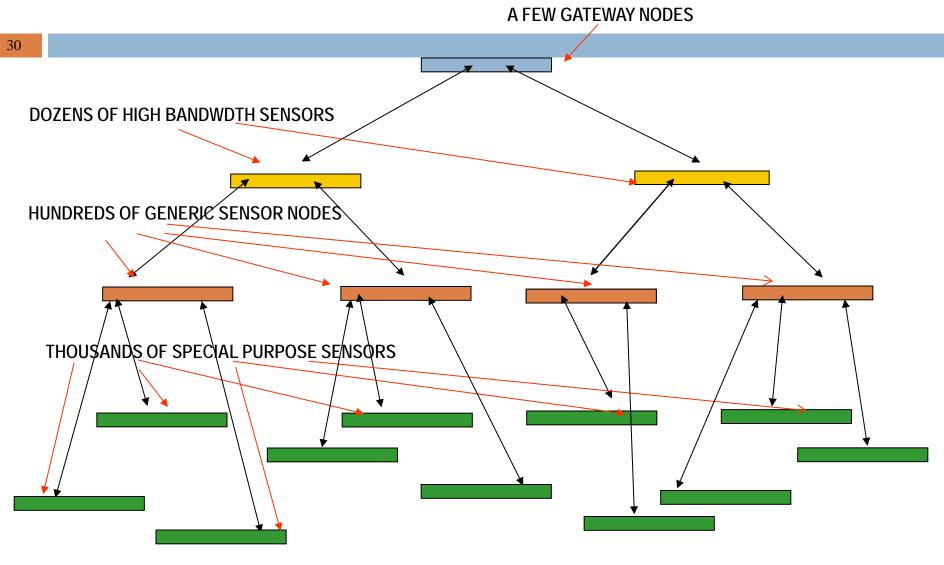
GOODS LOGISTICS

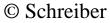
- ANIMALS TAGGING
- PRODUCTION CONTROL
- PRODUCT TRACKING
 - AIRPORT LUGGAGE MANAGMENT
 - WAREHOUSES MANAGEMENT

ACCESS CONTROL AND TICKETING

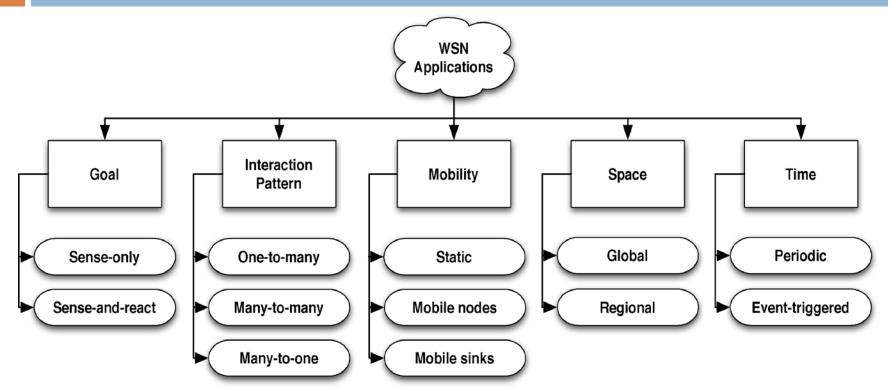
- ELECTRONIC TICKETING
 - SKIPASS
 - TELEPASS
 - PUBLIC TRANSPORTATION
- SECURITY APPLICATIONS
 - PEOPLE IDENTIFICATION
 - ELECTRONIC PASSPORT

TECHNOLOGY ENHANCEMENT


PRODUCT MAINTENANCE


© Schreiber

PROPERTIES OF SENSOR NETWORKS


- NODES HAVE A GENERAL-PURPOSE CPU AND SOME STORAGE SPACE
- □ SINCE:
 - COMMUNICATION CONSUMES MORE ENERGY THAN COMPUTATIONS
 - COMMUNICATION LINKS MAY BREAK FREQUENTLY DUE TO ENVIRONMENTAL INTERFERENCES AND NOISE
- → WE WANT TO REDUCE THE AMOUNT OF COMMUNICATION TRAFFIC AMONG NODES BY PREPROCESSING THE LOCAL DATA

A HIERARCHICAL WSN ARCHITECTURE

WSN APPLICATIONS

From: L. Mottola, G. P. Picco, ACM Computing Surveys, Vol. 43, No. 3, April 2011

© Schreiber

WSN SOFTWARE PLATFORMS

³² TinyOS	U.C. Berkeley	•Event-diven programming •nesC
SOS	UCLA	•Event-diven programming •C
Mantis	U. Boulder	Preemptive multithreadingC
Contiki	Swedish Institute of Computer Science (SICS)	•Event-diven programming •Multithreading •C
LiteOS	University of Illinois	•C •Real time •UNIX

TinyOS IS A SORT OF OPERATING SYSYEM, WHICH IS SIMPLY A LIBRARY THAT PROVIDES A NUMBER OF CONVENIENT SOFTWARE ABSTRACTIONS, INCLUDING COMPONENTS TO

- MODULATE PACKETS OVER THE RADIO LINK,
- READ SENSOR VALUES FOR DIFFERENT SENSOR HARDWARE,
- SYNCHRONIZE CLOCKS BETWEEN A SENDER AND RECEIVER AND
- PUT THE HARDWARE INTO A LOW-POWER STATE.

TinyOS LANGUAGES

nesC:

- EXTENSION OF THE C LANGUAGE AIMED AT NETWORKED EMBEDDED SYSTEMS, SUCH AS MOTES.
- TinyOS IS WRITTEN IN nesC, ITS STRUCTURE IS CLOSELY RELATED TO nesC'S FEATURES

Maté:

- A TINY BYTECODE INTERPRETER THAT RUNS ON TOP OF TinyOS.
- A TINY COMMUNICATION-CENTRIC VIRTUAL MACHINE DESIGNED FOR SENSOR NETWORKS.
- A HIGH LEVEL INTERFACE ALLOWING COMPLEX PROGRAMS TO BE VERY COMPACT SO REDUCING THE COST OF CODE TRANSMISSION

© Schreiber

TinyOS FILE SYSTEM

Matchbox

- PROVIDES THE BASIC FILE OPERATIONS ON MOTES FLASH-BASED STORAGE
 - CONFIGURATION SETTING DATA
 - VIRTUAL MACHINE PROGRAMS
 - SENSOR READINGS VALUES
- DESIGN GOALS
 - RELIABILITY
 - DETECT DATA CORRUPTION (crc)
 - PREVENT META-DATA CORRUPTION
 - LOW RESOURCE CONSUMPTION
 - FLASH OPTIMIZATION (WEAR-LEVELING)

TinyOS FILE SYSTEM

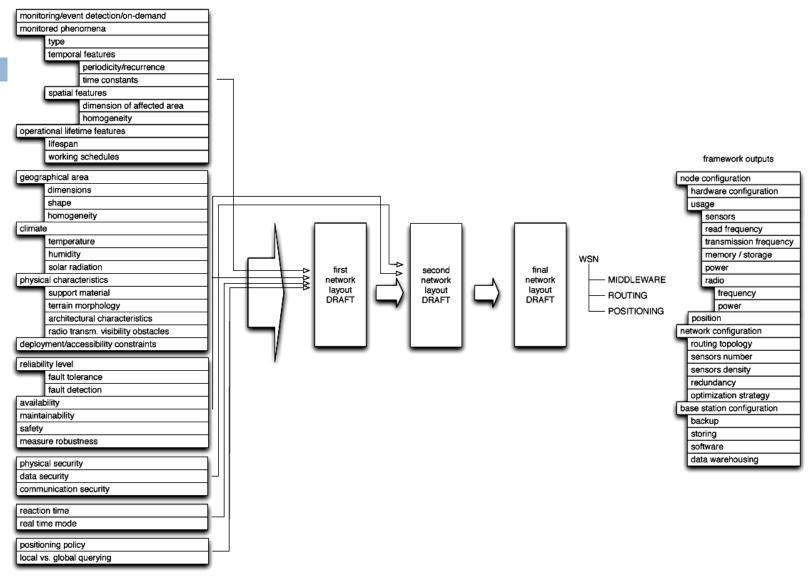
- Matchbox LIMITATIONS
 - ONLY FLAT FILE STRUCTURE
 - ONLY SEQUENTIAL ACCESS TO FILES
 - NO MULTIPLE READERS AND WRITERS ON THE SAME FILE
 - ONLY ONE FILE OPEN FOR READING AND ONE OPEN FOR WRITING
 - ONLY ONE REQUEST AT-A-TIME (no queues)
 - NO BUILT-IN SECURITY MECHANISM

OTHER FLASH FILE SYSTEMS

ELF (MANTIS)

- LOG STRUCTURED (WRITE-APPEND) FOR WEAR LEVELING
- RANDOM READ FACILITY
- HIERARCHICAL DIRECTORY
- GARBAGE COLLECTION
- CRASH RECOVERY

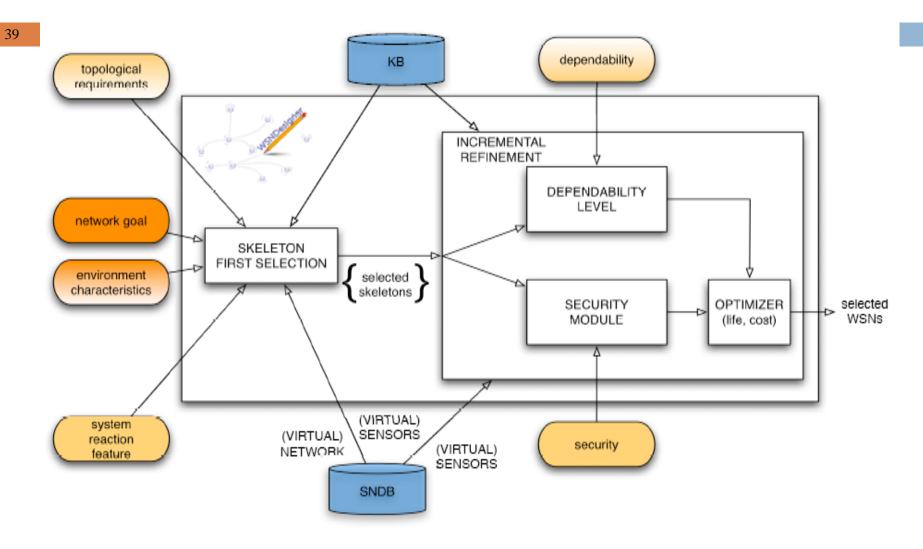
TFFS (TAU)


- PRUNED VERSIONED B-TREE
- TRANSACTIONS SUPPORT
- FOCUS ON RECOVERABILITY

EmStar (Stargate, iPAQ H3100, TinyOS)

FOR LINUX MICROSERVERS

© Schreiber


WSN DESIGN VARIABLES

38

© Schreiber

WSN CONFIGURATION TOOL

© Schreiber

BIBLIOGRAPHY LINKS

- 40
- <u>http://www.sics.se/contiki/</u>
- http://mantis.cs.colorado.edu/tikiwiki/tiki-index.php
- <u>http://mantis.cs.colorado.edu/media/sensys_elf_external.pdf</u>
- <u>http://www.cs.tau.ac.il/~stoledo/Pubs/usenix2005.pdf</u>
- <u>http://www.tau.ac.il/~stoledo/Pubs/flash-survey.pdf</u>
- <u>http://nesl.ee.ucla.edu/projects/sos-1.x/</u>
- <u>http://www.liteos.net/</u>
- <u>http://www.tinyos.net/</u>
- <u>http://cvs.cens.ucla.edu/emstar/downloads.html</u>
- http://www.tinyos.net/tinyos-1.x/doc/matchbox-design.pdf
- http://www.osservatori.net AA.VV RFID tra presente e futuro Collana quaderni AIP, Dip. Ing. Gestionale PoliMI, 2005

© Schreiber